γ-Active Constraints in Convex Semi-Infinite Programming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective DC Programming with Infinite Convex Constraints

In this paper new results are established in multiobjective DC programming with infinite convex constraints (MOPIC for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision variables ru...

متن کامل

An Unconstrained Convex Programming Approach to Linear Semi-Infinite Programming

In this paper, an unconstrained convex programming dual approach for solving a class of linear semi-infinite programming problems is proposed. Both primal and dual convergence results are established under some basic assumptions. Numerical examples are also included to illustrate this approach.

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

On duality theory of convex semi-infinite programming

where is a (possibly infinite) set, f : R ! R is an extended real valued function and g : R ! R. In the above formulation, a feasible point x 2 R is supposed to satisfy the constraints gðx,!Þ 0 for all !2 , and no structural assumptions are made about the set . In some situations it is natural to require that these constraints hold for almost every (a.e.) !2 . That is, the set is equipped with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Functional Analysis and Optimization

سال: 2014

ISSN: 0163-0563,1532-2467

DOI: 10.1080/01630563.2014.895745